An Efficient Approach for Assessing Hyperparameter Importance
نویسندگان
چکیده
The performance of many machine learning methods depends critically on hyperparameter settings. Sophisticated Bayesian optimization methods have recently achieved considerable successes in optimizing these hyperparameters, in several cases surpassing the performance of human experts. However, blind reliance on such methods can leave end users without insight into the relative importance of different hyperparameters and their interactions. This paper describes efficient methods that can be used to gain such insight, leveraging random forest models fit on the data already gathered by Bayesian optimization. We first introduce a novel, linear-time algorithm for computing marginals of random forest predictions and then show how to leverage these predictions within a functional ANOVA framework, to quantify the importance of both single hyperparameters and of interactions between hyperparameters. We conducted experiments with prominent machine learning frameworks and state-of-the-art solvers for combinatorial problems. We show that our methods provide insight into the relationship between hyperparameter settings and performance, and demonstrate that—even in very highdimensional cases—most performance variation is attributable to just a few hyperparameters.
منابع مشابه
Open Loop Hyperparameter Optimization and Determinantal Point Processes
We propose the use of k-determinantal point processes in hyperparameter optimization via random search. Compared to conventional approaches where hyperparameter settings are sampled independently, a k-DPP promotes diversity. We describe an approach that transforms hyperparameter search spaces for efficient use with a k-DPP. Our experiments show significant benefits over uniform random search in...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملAn efficient approach for availability analysis through fuzzy differential equations and particle swarm optimization
This article formulates a new technique for behavior analysis of systems through fuzzy Kolmogorov's differential equations and Particle Swarm Optimization. For handling the uncertainty in data, differential equations have been formulated by Markov modeling of system in fuzzy environment. First solution of these derived fuzzy Kolmogorov's differential equations has been found by Runge-Kutta four...
متن کاملEfficient Hyperparameter Optimization for Deep Learning Algorithms Using Deterministic RBF Surrogates
Automatically searching for optimal hyperparameter configurations is of crucial importance for applying deep learning algorithms in practice. Recently, Bayesian optimization has been proposed for optimizing hyperparameters of various machine learning algorithms. Those methods adopt probabilistic surrogate models like Gaussian processes to approximate and minimize the validation error function o...
متن کامل